Histone Hyperacetylation in Maize in Response to Treatment with HC-Toxin or Infection by the Filamentous Fungus Cochliobolus carbonum.
نویسندگان
چکیده
HC-toxin, the host-selective toxin produced by the filamentous fungus Cochliobolus carbonum, inhibits maize (Zea mays L.) histone deacetylases (HDs) in vitro. Here we show that HDs are also inhibited by HC-toxin in vivo, as demonstrated by the accumulation of hyperacetylated forms of the core (nucleosomal) histones H3.1, H3.2, H3.3, and H4 in both maize embryos and tissue cultures. Hyperacetylation of H4 and all isoforms of H3 in tissue cultures of inbred Pr (genotype hm/hm) occurred at 10 ng/mL (23 nM). The effect was host-selective; acetylation of histones in the near isogenic inbred Pr1 (genotype Hm/Hm) did not occur in tissue cultures or embryos treated with 0.2 [mu]g/mL or 10 [mu]g/mL HC-toxin, respectively. Hyperacetylation of histone H4 in embryos of Pr1 began to occur at 50 [mu]g/mL. HC-toxin, and 200 [mu]g/mL HC-toxin caused equal hyperacetylation in Pr and Pr1 embryos. Hyperacetylated core histones, especially of the isoforms of histone H3, accumulated in leaves of inbred Pr, but not Pr1, after infection by toxin-producing strains of C. carbonum. Accumulation of hyperacetylated histones began at 24 h after inoculation, before the development of visible disease symptoms. Hyperacetylation of H2A or H2B histones were not detected in any of the studies. The results are consistent with HD being a primary site of action of HC-toxin.
منابع مشابه
A putative branched-chain-amino-acid transaminase gene required for HC-toxin biosynthesis and pathogenicity in Cochliobolus carbonum.
The cyclic tetrapeptide HC-toxin is required for pathogenicity of the filamentous fungus Cochliobolus carbonum on maize. HC-toxin production is controlled by a complex locus, TOX2. The isolation and characterization of a new gene of the TOX2 locus, TOXF, is reported. It is shown that TOXF is specifically required for HC-toxin production and pathogenicity. It is present as two or three copies in...
متن کاملFungal Induced Protein Hyperacetylation Identified by Acetylome Profiling
Lysine acetylation is a key post-translational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established and it is known that pathogen effector proteins encoding acetyltransferses can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can ...
متن کاملA gene related to yeast HOS2 histone deacetylase affects extracellular depolymerase expression and virulence in a plant pathogenic fungus.
A gene, HDC1, related to the Saccharomyces cerevisiae histone deacetylase (HDAC) gene HOS2, was isolated from the filamentous fungus Cochliobolus carbonum, a pathogen of maize that makes the HDAC inhibitor HC-toxin. Engineered mutants of HDC1 had smaller and less septate conidia and exhibited an approximately 50% reduction in total HDAC activity. Mutants were strongly reduced in virulence as a ...
متن کاملCharacterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi.
HC-toxin, a cyclic peptide made by the filamentous fungus Cochliobolus carbonum, is an inhibitor of histone deacetylase (HDAC) from many organisms. It was shown earlier that the HDAC activity in crude extracts of C. carbonum is relatively insensitive to HC-toxin as well as to the chemically unrelated HDAC inhibitors trichostatin and D85, whereas the HDAC activity of Aspergillus nidulans is sens...
متن کاملMolecules of Interest HC - toxin
HC-toxin is a cyclic tetrapeptide of structure cyclo(D-Pro-L-Ala-D-Ala-L-Aeo), where Aeo stands for 2-amino-9,10-epoxi-8-oxodecanoic acid. It is a determinant of specificity and virulence in the interaction between the producing fungus, Cochliobolus carbonum, and its host, maize. HC-toxin qualifies as one of the few microbial secondary metabolites whose ecological function in nature is understo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 115 3 شماره
صفحات -
تاریخ انتشار 1997